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Introduction

Quadratic programming (QP) problems constitute a special class of nonlinear
programming (NLP) problems. Numerous problems in real world applications,
including problems in planning and scheduling, economies of scale, engineering
design, and control are naturally expressed as QP problems. One also uses QP
problems in order to approximate problems.

Many important research results for linearly constrained quadratic program-
ming (LCQP) problems can be found in Lee et al. (2005) and the references cited
therein. Since the finite dimensional LCQP problems have been rather compre-
hensively investigated, several authors are now interested in studying quadratically
constrained quadratic programming (QCQP) problems.

The solution existence of QP problems is one of the most important is-
sues. Frank and Wolfe (1956) extended the fundamental existence of linear pro-
gramming by proving that an arbitrary quadratic function f attains its minimum
over a nonempty convex polyhedral set C provided f is bounded from below
over C (called Frank-Wolfe Theorem). From then to now, there have been some
other proofs for this theorem and its extended versions (Belousov (1977), Terlaky
(1985)). In 1999, Luo and Zhang proved that a QP problem has a solution if its
objective function is bounded below over a nonempty constraint set defined by a
convex quadratic function and linear constraint functions. They also showed that
there exists a nonconvex QP problem in R4 with two convex quadratic constraints
whose objective function is bounded from below over a nonempty constraint set,
which has no solutions. Belousov and Klatte (2002) observed that the effect of
nonconvexity of the objective function can be seen in R3. Bertsekas and Tseng
(2007) proved the solution existence of a QP problem when all the asymptotic di-
rections of constraint set are retractive local horizon directions and the objective
function is bounded below constraint set. By using the concept of recession cone
in convex analysis, Lee et al. (2012) established an Eaves type Theorem for con-
vex QCQP problems. Up to now, many researchers have been studying sufficient
conditions for the solution existence of a nonconvex QP problem whose constraint
set is defined by finitely many quadratic inequalities.

Stability for parametric QCQP problems plays an important role because
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they can be used for analyzing algorithms for solving this problem. For convex
QP problems, Best et al. (1990, 1995) obtained some results on the continuity
and differentiability of the optimal value function; continuity and/or differentia-
bility properties of the global solution map have been discussed (see, for example,
Auslender and Coutat (1996), Best and Chakravarti (1990), Cottle et al. (1992),
Daniel (1973), Guddat (1976), Robinson (1979). For nonconvex LCQP problems,
the continuity for the global solution map, stationary solution map and the opti-
mal value function have been investigated in details by Lee et al. (2005) and the
references therein. For TRSs, Lee et al. (2012) investigated the case where the
linear part or the quadratic form of the objective function is perturbed and obtain
necessary and sufficient conditions for the upper/lower semicontinuity of the sta-
tionary solution map and the global solution map, explicit formulas for computing
the directional derivative and the Fréchet derivative of the optimal value function.
Lee and Yen (2011) estimated the Mordukhovich coderivative and conditions for
the local Lipschitz-like property of the stationary solution map in parametric TRS.
Since QP is a class of nonlinear optimization problems, the results in nonlinear
optimization can be applied to convex and nonconvex QP problems. Differential
properties of the marginal function and of the global solution map in mathematical
programming were investigated by Gauvin and Dubeau (1982). Continuity and
Lipschitzian properties of the optimal value function have been studied by Bank et
al. (1982), Rockafellar and Wets (1998). Auslender and Cominetti (1990) consid-
ered first and second-order sensitivity analysis of NLP under directional constraint
qualification conditions. Minchenko and Tarakanov (2015) discussed directional
derivatives of the optimal value functions under the assumption of the calmness
of global solution mapping. Lipschitzian continuity of the optimal value function
was presented by Dempe and Mehlitz (2015). Some similar topics related to Lip-
schitzian stability have been investigated in Gauvin and Janin (1990), Luderer
et al. (2002), Minchenko and Sakochik (1996), Seeger (1988) and the references
given there. A survey of recent results on stability of NLP problems was given by
Bonnans and Shapiro (2000). In which, many interesting results can be applied
for QP. However, the special structure of QP problems allows one to have deeper
and more comprehensive results on stability in QCQP.

This dissertation gives new results on the existence and stability for quadratic
programming problems with non-convex objective function. By using the special
structure of quadratic forms, the recession cone and some advanced tools of vari-
ational analysis, we propose conditions for the solution existence and investigate
in details the stability for QCQP problems. The specific techniques and theoret-
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ical results for LCQP and TRS cannot be directly applied, and a more general
approach is used. Among our proposed assumptions, there are some weaker than
ones used in the cited works (applied for QP). We also generalize some stability
results from the case of polyhedral convex constraint set to the case of constraint
set defined by finitely many convex quadratic functions.

The dissertation has four chapters and a list of references.

Chapter 1 presents sufficient conditions for the solution existence of QCQP
problems through a Frank-Wolfe type Theorem and an Eaves type Theorem.

Chapter 2 investigates the continuity of the global, local and stationary
solution maps of parametric QCQP problems by using the obtained results on
solution existence.

Chapter 3 characterizes the continuity, Lipschitzian continuity and direc-
tional differentiability of the optimal value function under weaker assumptions in
comparison with results which are implied from general theory.

Chapter 4 describes the special stability properties of parametric extend
trust region subproblems (ETRS). We estimate the Mordukhovich coderivative of
the stationary solution map and investigate Lipschitzian stability for parametric
ETRS.

The dissertation is written on the basis of the paper [1] in Acta Math.
Vietnam., the paper [2] in Optim. Lett., and preprints [3–6], which have been
submitted.

The results of this dissertation were presented at International Workshop
on New Trends in Optimization and Variational Analysis for Applications (Quyn-
hon, December 7–10, 2016); The 14th Workshop on Optimization and Scientific
Computing (Bavi, April 21–23, 2016); The 5th National Workshop of young re-
searchers in teacher training university (Vinhphuc, May 23–24, 2015); Scientific
Conference at Hanoi Pedagogical University 2 (HPU2) (Vinhphuc, November 14,
2015); at the seminar of Department of Mathematics, HPU2 and at the seminar
of the Department of Numerical Analysis and Scientific Computing, Institute of
Mathematics, Vietnam Academy of Science and Technology.
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Chapter 1

Existence of solutions

The aim of this chapter is to investigate existence of solutions of QCQP
problems. The presentation given below comes from the results in [2].

1.1. Problem statement

Let Rn be n-dimensional Euclidean space equipped with the standard scalar
product and the Euclidean norm, Rn×n

S be the space of real symmetric (n × n)–
matrices equipped with the matrix norm induced by the vector norm in Rn and
Rn×n
S+ be the set of positive semidefinite real symmetric (n× n)–matrices. Let

P := Rn×n
S × Rn × (Rn×n

S+ × Rn × R)× . . .× (Rn×n
S+ × Rn × R)︸ ︷︷ ︸

m times

⊂ Rs

with s = (m + 1)(n2 + n + 1) − 1. The scalar product of vectors x, y and the
Euclidean norm of a vector x in a finite-dimensional Euclidean space are denoted,
respectively, by xTy (or 〈x, y〉) and ‖x‖, where the superscript T denotes the
transposition.

Let us consider the following nonconvex QCQP problem

min f(x, p) = 1
2x

TQx+ qTx
s.t. x ∈ Rn : gi(x, p) = 1

2x
TQix+ qTi x+ ci ≤ 0, i = 1, . . . ,m,

(QP (p))

depending on the parameter p = (Q, q,Q1, q1, c1, . . . , Qm, qm, cm) ∈ P.

The feasible region, the local solution set and the global solution set of
(QP (p)) will be denoted by F(p), L(p), and G(p), respectively.

The recession cone of F(p) 6= ∅ is defined by

0+F(p) = {v ∈ Rn : x+ tv ∈ F(p) ∀x ∈ F(p) ∀t ≥ 0}.

According to Kim et al. (2012), we obtain that

0+F(p) = {v ∈ Rn : Qiv = 0, qTi v ≤ 0, ∀i = 1, . . . ,m}.



The function
ϕ : P −→ R ∪ {±∞}

defined by

ϕ(p) =

{
inf{f(x, p) : x ∈ F(p)} if F(p) 6= ∅;
+∞ if F(p) = ∅,

is called the optimal value function of the parametric problem (QP (p)).

1.2. A Frank-Wolfe type theorem

Fix p ∈ P and let

I = {1, . . . ,m}, I0 = {i ∈ I : Qi = 0}, I1 = {i ∈ I : Qi 6= 0} = I \ I0.

The following result is a generalization of Frank-Wolfe Theorem.

Theorem 1.1. Consider the problem (QP (p)). Assume that F(p) is nonempty,
f(x, p) is bounded from below over F(p) and one of the following conditions is
satisfied:
(A1) The set I1 consists of at most one element;
(A2) If v ∈ 0+F(p) such that vTQv = 0 then qTi v = 0 for all i ∈ I1.

Then, (QP (p)) has a solution .

We obtain some important consequences of Theorem 1.1.

Corollary 1.1. (Frank-Wolfe Theorem) Consider the LCQP problem (that is,
(QP (p)) with Qi = 0 for all i = 1, ...,m). Assume that f(x, p) is bounded from
below over nonempty F(p). Then, the problem (LCQP) has a solution .

Corollary 1.2. Assume that the function f(x, p) = 1
2x

TQx+ qTx is bounded from
below over Rn. Then, there exists an x∗ ∈ Rn such that f(x∗, p) ≤ f(x, p) for all
x ∈ Rn.

Corollary 1.3. Consider (QP (p)). If F(p) is nonempty and vTQv > 0 for every
nonzero vector v ∈ 0+F(p) then G(p) is a nonempty compact set.

1.3. An Eaves type theorem

Eaves (1971) presented another fundamental existence theorem (called Eaves
Theorem) for LCQP problems which gives us a tool for checking the boundedness
from below of the object function on constraints set.
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Unlike the case of LCQP, Eaves type necessary conditions for solution exis-
tence of (QP (p)) do not coincide with the sufficient ones. The following result is
a generalization of Eaves Theorem.

Theorem 1.2. Consider (QP (p)) and assume that F(p) is nonempty. The fol-
lowing statements are valid:

a) If (QP (p)) has a solution, then

i) vTQv ≥ 0 ∀v ∈ 0+F(p), (1.17)

ii) (Qx+ q)Tv ≥ 0 ∀x ∈ F(p)∀v ∈ {u ∈ 0+F(p) : uTQu = 0}. (1.18)

b) If (1.17), (1.18), and (A2) hold, then (QP (p)) has a solution.

The following example shows that (A2) can not be dropped from the as-
sumptions in Theorem 1.2.

Example 1.1. Consider the following problem

min{f(x, p) = −2x2x3 + 2x1 : x ∈ F(p)},

where F(p) = {(x1, x2, x3) ∈ R3 : x2
2 − x1 ≤ 0;x2

3 − x1 − 1 ≤ 0}. Both conditions
(1.17) and (1.18) are satisfied. Condition (A2) is not satisfied and this problem
has no solution.

To illustrate for Theorem 1.2, we consider the following example.

Example 1.2. Let us consider the problem (QP (p)) with m = 2, n = 3, and

Q =

0 0 0
0 0 0
0 0 1

 , q =

 0
2
−5

 , Q1 =

2 0 0
0 0 0
0 0 0

 ,

q1 =

0
1
0

 , c1 = 0, Q2 =

0 0 0
0 2 0
0 0 0

 , q2 =

0
0
1

 , c2 = 0.

According to Theorem 1.2, this problem has a solution.
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Chapter 2

Stability for global, local and stationary
solution sets

In this chapter, we characterize continuity of the global, local and stationary
solution maps. The material of this chapter is taken from [2,4,6].

2.1. Continuity of the global solution map

Using the obtained results on solution existence in Chapter 1, this section
characterizes continuity of the global solution map of QCQP problems. First of
all, we present the following assumptions and auxiliary results.

2.1.1. Assumptions and auxiliary results

An important assumption used in our proof is given below.
Assumption (A3) The set F(p) 6= ∅ and vTQv > 0 for every nonzero vector
v ∈ 0+F(p).

Clearly, (A3) holds if F(p) is nonempty and bounded. Thus (A3) is weaker
than the uniform compactness of C near p in Gauvin and Dubeau (1982) applied
for (QP (p)).

2.1.2. Upper semicontinuity of the global solution map

The upper semicontinuity of the global solution map G(·) is characterized
as follows.

Theorem 2.1. Consider the problem (QP (p)) and p̄ ∈ P. Assume that (SCQ)
and (A3) hold at p̄. Then, G(·) is upper semicontinuous at p̄.
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2.1.3. Lower semicontinuity of the global solution map

The following theorem shows the necessary and sufficient condition for the
lower semicontinuity of the global solution map G(·).

Theorem 2.2. Consider the problem (QP (p)) and p̄ ∈ P. The global solution map
G(·) is lower semicontinuous at p̄ if and only if (SCQ) and (A3) hold at p̄ and
G(p̄) is a singleton.

2.2. Continuity of the local solution map

In this section, we propose a necessary and sufficient condition for the lower
semicontinuity of the local solution map L(·). The isolated local solution set of
(QP (p)) will be denoted by IL(p). The main result is presented below.

Theorem 2.3. The local solution map L(·) is lower semicontinuous at p̄ if and
only if (QP (p̄)) satisfies (SCQ) and the set of local solutions coincides with the
set of isolated local solutions, i.e., L(p̄) = IL(p̄).

2.3. Stability of stationary solutions

In this section, the upper semicontinuity of the stationary solution map is
characterized. A stability result for stationary solution set is also investigated in
the connection with parametric extended affine variational inequalities.

2.3.1. Preliminaries

Recall that x is a stationary solution of the problem (QP (p)) if there exists
Lagrange multiplier λ ∈ Rm satisfying the following Karush-Kuhn-Tucker (KKT)
condition:

Qx+ q +
m∑
i=1

λi(Qix+ qi) = 0,

λ ≥ 0, gi(x, p) ≤ 0,

λigi(x, p) = 0, i = 1, . . . ,m.
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The stationary solution set of (QP (p)) is denoted by S(p). It is well-known
that under (SCQ),

G(p) ⊂ L(p) ⊂ S(p) ⊂ F(p).

2.3.2. Upper semicontinuity of the stationary solution map

Denote
Null(Q) := {x ∈ Rn : Qx = 0}.

The following result gives a sufficient condition for the upper semicontinuity of
the stationary solution map G(·).

Theorem 2.4. Consider the problem (QP (p)) and p̄ ∈ P. If (QP (p̄)) satisfies
(SCQ) and

Null(Q̄) ∩ 0+F(p̄) = {0},
then S(·) is upper semicontinuous at p̄.

Remark 2.1. According to Theorem 2.4, the assumption (SCQ) is also a sufficient
condition for the upper semicontinuity of the stationary solution map S(·) in the
case where any component of p is perturbed. But the reverse, in general, is not
true.

The following is an immediate consequence of Theorem 2.4.

Corollary 2.1. Consider the problem (QP (p)) and p̄ ∈ P. If (QP (p̄)) satisfies
(SCQ) and one of the following conditions is satisfied:

(i) F(p̄) is bounded;

(ii) Q̄ is nonsingular (that is, det Q̄ 6= 0),

then S(·) is upper semicontinuous at p̄.

2.3.3. A result on stability of stationary solutions

In this section, we presents a result on stability of the stationary solution
set. We use the tools relate to extended affine variational inequality (EAVI) to
prove the main result.
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Let S ⊂ Rn be a closed convex set and F be a function on S. A variational
inequality (VI) problem has the following form

Find x ∈ S such that 〈F (x), y − x〉 ≥ 0 ∀y ∈ S. (V I(F, S))

V I(F, S) reduces to the affine variational inequality (AVI) problem if S is a
polyhedral convex set and F (x) = Qx+ q with Q being an (n×n)-matrix and q ∈
Rn. The stability of the AVI problems has been studied by many authors. Gowda
and Pang (1994) obtained several sufficient conditions for the boundedness and
stability of solutions to the AVI problem. Robinson (1979) studied the stability of
the AVI problems by the nonemptiness and the boundedness of global solution set
for the case where Q is a positive semidefinite matrix. Some similar topics have
been investigated by Gowda and Seidman (1990). Lee et al. (2007) presented
conditions for the upper and the lower semicontinuities of the solution map of AVI
problems. Some Lipschitz continuous properties of the solution map of the AVI
problem were discussed in Lee et al. (2005).

As F (x) = Qx + q and S is an arbitrary closed convex set, V I(F, S) re-
duces to the EAVI problem. Tam (2004) presented some stability results for the
EAVI problem. A survey on the parametric optimization problems and parametric
variational inequalities was given by Yen (2009).

In this section, we concern the EAVI problem as follows

Find x ∈ F(p) such that 〈Qx+ q, y − x〉 ≥ 0 ∀y ∈ F(p) (V I(p))

depending on the parameter p ∈ P. The solution set of V I(p) will be denoted by
SolV I(p). Under the assumption (SCQ), we have

S(p) = SolV I(p).

The following theorem is the main result in this subsection.

Theorem 2.5. Consider the problem (QP (p)) and p̄ ∈ P. Assume that (QP (p̄))
satisfies (SCQ) and the following two conditions are satisfied:

(a1) {h ∈ 0+F(p̄) : hT Q̄h = 0} ⊂ Null(Q̄);

(a2) If F(p̄) is unbounded then

lim sup
k→∞

(xk)T Q̄xk

‖xk‖2
≥ 0

for every sequence {xk} ⊂ F(p̄) satisfying ‖xk‖ → ∞.
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Then, the following four assertions are equivalent:

(b1) There exists a number γ > 0 such that S(p̃) is nonempty for every p̃ ∈ P
satisfying ‖p̃− p̄‖ < γ;

(b2) S(p̄) is nonempty and bounded;

(b3)
{
x ∈ F(p̄) : (Q̄x+ q̄)Th > 0 ∀h ∈ 0+F(p̄) \ {0}

}
6= ∅;

(b4) q̄ ∈ int((0+F(p̄))∗ − Q̄F(p̄)),
where (0+F(p̄))∗ = {y ∈ Rn : hTy ≥ 0 ∀h ∈ 0+F(p̄)}.

Remark 2.2. The assumption (a2) is weaker than the assumption (ii) which pro-
posed by Tam (2004).
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Chapter 3

Continuity and directional
differentiability of the optimal value
function

This chapter deals with continuity and directional differentiability of the
optimal value function in nonconvex QCQP problems. Among our proposed as-
sumptions, there are some weaker than the assumptions used in the cited works
(applied for QCQP). This chapter is written on the basis of the results in [1, 2].

3.1. Continuity of the optimal value function

The following theorem shows the necessary and sufficient condition for con-
tinuity of the optimal value function.

Theorem 3.1. Consider (QP (p)) and p̄ ∈ P. Assume that f is bounded from
below over F(p̄) 6= ∅. Then, ϕ is continuous at p̄ if and only if (SCQ) and (A3)
are fulfilled at p̄.

Stability and Lipschitzian stability for parametric nonconvex QCQP problem
are characterized as follows.

Theorem 3.2. Consider (QP (p)) and p̄ ∈ P. Assume that (SCQ) and (A3) hold
at p̄. Then, the following four statements are equivalent:

(a) G(·) is lower semicontinuous at p̄;

(b) G(·) is continuous at p̄;

(c) G(p̄) is a singleton and ϕ(·) is locally Lipschitz at p̄; and

(d) G(p̄) is a singleton and ϕ(·) is continuous at p̄.



3.2. First-order directional differentiability

For x̄ ∈ G(p), denote by Λ(x̄, p) the set of all Lagrange multipliers corre-
sponding to x̄.

We consider the following assumption
Assumption (A4) For every tk ↓ 0, for every xk ∈ G(p + tkp

0) satisfying xk →
x̄ ∈ G(p), and for every λ ∈ Λ(x̄, p), the following inequality holds

lim inf
k→+∞

(xk − x̄)T
(
Q+

∑
i∈I(x̄,p) λiQi

)
(xk − x̄)

tk
≥ 0.

Remark 3.1. If ∇2
xxL(x̄, p, λ) = Q+

∑
i∈I(x̄,p) λiQi is positive semidefinite matrix,

then (A4) holds. In some cases, (A4) is weaker than (SOSC)p0 in Auslender and
Cominetti (1990) and the assumption of the calmness of global solution mapping
in Minchenko and Tarakanov (2015) applied for (QP (p)); in some cases, (A4) is
also weaker than (H3) in Minchenko and Sakochik (1996) applied for (QP (p)).

Theorem 3.3. If the problem (QP (p)) satisfies (SCQ), (A3), and (A4), then ϕ is
first-order directional differentiable at p in every direction p0 ∈ P and

ϕ′(p, p0) = min
ȳ∈G(p)

max
λ∈Λ(ȳ,p)

{
f(ȳ, p0) +

m∑
i=1

λigi(ȳ, p
0
i )

}
= min

ȳ∈G(p)
min

h∈D(ȳ,p,p0)

{
(Qȳ + q)Th+ f(ȳ, p0)

}
.

Theorem 3.4. If the problem (QP (p)) satisfies (A3), then ϕ is first-order direc-
tional differentiable at p in every direction p0 = (Q0, q0, 0) ∈ P and

ϕ′(p, p0) = min
ȳ∈G(p)

{
1

2
ȳTQ0ȳ + (q0)T ȳ

}
.

3.3. Second-order directional differentiability

Firstly, we consider the following assumption:

Assumption (A5) For every sequence {tk}, tk ↓ 0, for every sequence {xk} satis-
fying xk ∈ G(p+ tkp

0), xk → x̄ ∈ G(p), hk := (xk− x̄)/tk, there exists λ̄ ∈ Λ∗(x̄, p)
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such that

lim inf
k→∞

(hk, p0)T∇2
(x,p)L(x̄, p, λ̄)(hk, p0)

≥ inf
h∈D∗(x̄,p,p0)

max
λ∈Λ∗(x̄,p)

(h, p0)T∇2
(x,p)L(x̄, p, λ)(h, p0).

In some cases, (A5) is also weaker than (SOSC)p0 and the assumption of the
calmness of global solution mapping applied for (QP (p)).

For each h ∈ D(x̄, p, p0), let

I(x̄, h, p, p0) := {i ∈ I(x̄, p) : (Qix̄+ qi)
Th+ gi(x̄, p

0) = 0}.

We consider the following proposition.

Proposition 3.1. Assume that, for every sequence {tk}, tk ↓ 0, for every sequence
{xk}, xk ∈ G(p + tkp

0), xk → x̄ ∈ G(p), for every sequence hk := (xk − x̄)/tk
satisfying ‖hk‖ → ∞, the following two conditions is satisfied:

(b1) (Q0
i x̄+ q0

i )
T (xk − x̄) ≥ 0 for every i ∈ I(x̄, p);

(b2) (Qx̄+ q)Tv ≥ 0 ∀v ∈ {u ∈ Rn : (Qix̄+ qi)
Tu ≤ 0, i ∈ I(x̄, hk, p, p0)} for every

k large enough.

Then, (A5) holds.

The main result in thi section is presented as follows.

Theorem 3.5. Consider the problem (QP (p)) and p0 ∈ P. If (SCQ) and (A3)–
(A5) are satisfied, then ϕ is second-order directional differentiable at p in direction
p0 and

ϕ′′(p, p0) = min
x̄∈G(p,p0)

inf
h∈D∗(x̄,p,p0)

max
λ∈Λ∗(x̄,p)

{
hT
(
Q+

∑
i∈I(x̄,p)

λiQi

)
h+ (3.31)

+2

(
Q0x̄+ q0 +

∑
i∈I(x̄,p)

λi(Q
0
i x̄+ q0

i )

)T
h

}
.

Corollary 3.1. Consider the problem (QP (p)) and p0 ∈ P. Assume that (SCQ),
(A3), and at least one of the following conditions is satisfied:
i) (A4) and the assumptions of Proposition 3.1 hold;
ii) (SOSC)p0 holds at x̄ ∈ G(p);
iii) G(·) is calm at (p, x̄) ∈ P×G(p).
Then, ϕ is second-order directional differentiable at p in direction p0 and (3.31)
holds.
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The following result gives a sufficient condition for second-order directional
differentiability of the optimal value function.

Theorem 3.6. Assume that the problem (QP (p)) satisfies (SCQ) and (A3), and
ϕ is first-order directional differentiable at p in every direction p0 ∈ P. Assume
that there exist λ̄ ∈ Λ(x̄, p) and, for every t ↓ 0, xt ∈ G(p + tp0), xt → x̄ ∈ G(p)
such that

lim
t↓0

(ht, p
0)T∇2

(x,p)L(x̄, p, λ̄)(ht, p
0)

exists, where ht = (xt − x̄)/t, and

lim
t↓0

λ̄igi(xt, p+ tp0)

t2
= 0.

Then ϕ is second-order directional differentiable at p in direction p0 and

ϕ′′(p, p0) = lim
t↓0

[
hTt

(
Q+

∑
i∈I(x̄,p)

λ̄iQi

)
ht+

+ 2

(
Q0x̄+ q0 +

∑
i∈I(x̄,p)

λ̄i(Q
0
i x̄+ q0

i )

)T
ht

]
.

15



Chapter 4

Stability for extended trust region
subproblems

This chapter devotes detailed discussion to a class of QCQP problems.
Namely, we study stability and Lipschitzian stability for parametric extended trust
region subproblems (ETRS). The material of this chapter is taken from [3,5,6].

4.1. Problem statement

In this section, we concern to parametric ETRS as follows

min f(x,Q, c) := 1
2x

TQx+ cTx
s.t. x ∈ Rn : xTDx ≤ r, Ax+ b ≤ 0,

(ETm(w))

where Q,D ∈ Rn×n are symmetric, D is positive definite, c ∈ Rn, A ∈ Rm×n,
b ∈ Rm, r > 0 and w := (Q, c,D, r, A, b).

4.2. Some stability results for parametric ETRS

4.2.1. Continuity of the stationary solution map

The necessary condition for the lower semicontinuity of the multifunction
S(Q̄, ., D̄, r̄, Ā, .) is characterized in the following theorem.

Theorem 4.1. Consider the problem (ETm(w)) and w̄ ∈ W. If Ā has full rank
and S(Q̄, ., D̄, r̄, Ā, .) is lower semicontinuous at (q̄, b̄), then (ETm(w̄)) satisfies
(SCQ) and S(w̄) is a nonempty set which contains at most 2m points.

Corollary 4.1. Consider the problem (ETm(w)) and w̄ ∈ W. If Ā has full rank
and S(·) is lower semicontinuous at w̄ then (ETm(w̄)) satisfies (SCQ) and S(w̄)
is a nonempty set which contains at most 2m points.



The following result show some sufficient conditions for the semicontinuity
of S(·).

Theorem 4.2. Consider (ETm(w)) and w̄ ∈W. If S(w̄) 6= ∅ and at least one of
the following conditions is satisfied:

(i) Q̄+λD̄ is positive definite for every KKT pair (x, λ, µ) and (ETm(w̄)) satisfies
(SCQ);

(ii) S(w̄) is a singleton and (ETm(w̄)) satisfies (SCQ);

(iii) S(w̄) is a singleton and ϕ is continuous at w̄;

(iv) G(·) is lower semicontinuous at w̄;

(v) S(w̄) is finite and S(w̄) ∩ ∂F(w̄) = ∅;

(vi) Q̄ is nonsingular and S(w̄) ∩ ∂F(w̄) = ∅,

then S(·) is lower semicontinuous at w̄.

Corollary 4.2. Consider (ETm(w)) and w̄ ∈ W. If (ETm(w̄)) satisfies (SCQ)
and Q̄ is positive definite, then S(·) is lower semicontinuous at p̄.

4.2.2. Continuity of the optimal value function

The main result in this subsection is presented in the following theorem.

Theorem 4.3. Consider the problem (ETm(w)) and w̄ ∈ W. The following as-
sertions hold:

(i) ϕ is lower semicontinuous at w̄;

(ii) ϕ is upper semicontinuous at w̄ if (ETm(w̄)) satisfies (SCQ);

(iii) ϕ is continuous at w̄ if (ETm(w̄)) satisfies (SCQ);

(iv) If F(w̄) is nonempty and if ϕ is continuous at w̄, then (ETm(w̄)) satisfies
(SCQ);

(v) If F(w̄) is empty, then ϕ is continuous at w̄.
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4.3. ETRS with a linear inequality constraint

4.3.1. Lower semicontinuity of the stationary solution map

A necessary and sufficient conditions for the lower semicontinuity of the
stationary solution map are proposed below.

Theorem 4.4. Consider the problem (ET1(w)) and w̄ ∈ W. The multifunction
S(Q̄, ., r̄, ā, .) is lower semicontinuous at (q̄, b̄) if and only if (ET1(w̄)) satisfies
(SCQ) and S(w̄) is a singleton.

Theorem 4.5. Consider the problem (ET1(w)) and w̄ ∈ W. The multifunction
w̃ 7→ S(w̃) is lower semicontinuous at p̄ if and only if (ET1(w̄)) satisfies (SCQ)
and S(w̄) is a singleton.

Corollary 4.3. Consider the problem (ET1(w)) and w̄ ∈ W. Assume that the
problem (ET1(w̄)) satisfies (SCQ). If S(·) is continuous at w̄ then G(·) is contin-
uous at w̄.

4.3.2. Coderivatives of the normal cone mapping

The feasible region of the problem (ET1(w̄)) is rewritten as follows

F(r, b) := {x ∈ Rn : ‖x‖ ≤ r, aTx+ b ≤ 0},

which depends on the parameter (r, b).

Denote

N(x;F(r, b)) := {v ∈ Rn : 〈v, y − x〉 ≤ 0 ∀y ∈ F(r, b)}

be the normal cone to the convex set F(r, b) at x.

It is easy to see that

N(x;F(r, b)) =



{0} if ‖x‖ < r, aTx+ b < 0,

{θx : θ ≥ 0} if ‖x‖ = r, aTx+ b < 0,

{γa : γ ≥ 0} if ‖x‖ < r, aTx+ b = 0,

{θx+ γa : θ ≥ 0, γ ≥ 0} if ‖x‖ = r, aTx+ b = 0,

∅ if ‖x‖ > r or aTx+ b > 0.

For every (x, r, b) ∈ Rn × R× R, we put

N (x, r, b) = N(x;F(r, b)).
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If r ≤ 0 then it is convenient to set N (x, r, b) = ∅ for all x ∈ Rn. Hence N :
Rn × R× R ⇒ Rn is a multifunction with closed convex values and called be the
normal cone mapping related to parametric (ET1(w̄)).

In this section, we calculate and estimate the Fréchet and Mordukhovich
coderivatives of the normal cone mapping related to the parametric (ET1(w̄)).

Fix w̄ := (x̄, r̄, b̄, v̄) ∈ gphN , we compute and estimate the Fréchet coderiva-
tive of the normal cone mapping.

Theorem 4.6. For every w̄ = (x̄, r̄, b̄, v̄) ∈ gphN , the assertions are valid:

(a) If ‖x̄‖ < r̄ and aT x̄+ b̄ < 0, then v̄ = 0 and

D̂∗N (w̄)(v∗) = {(0Rn, 0R, 0R)};

(b) If ‖x̄‖ = r̄, aT x̄+ b̄ < 0, and v̄ = θx̄ with θ > 0 then

D̂∗N (w̄)(v∗) =

{
Ω1(w̄)(v∗) if 〈v∗, x̄〉 = 0,

∅ if 〈v∗, x̄〉 6= 0;

(c) If ‖x̄‖ = r̄, aT x̄+ b̄ < 0, and v̄ = 0 then

D̂∗N (w̄)(v∗) =

{
Ω2(w̄)(v∗) if 〈v∗, x̄〉 ≥ 0,

∅ if 〈v∗, x̄〉 < 0;

(d) If ‖x̄‖ < r̄, aT x̄+ b̄ = 0, and v̄ = γa with γ > 0 then

D̂∗N (w̄)(v∗) =

{
Ω3(w̄)(v∗) if 〈v∗, a〉 = 0,

∅ if 〈v∗, a〉 6= 0;

(e) If ‖x̄‖ < r̄, aT x̄+ b̄ = 0, and v̄ = 0 then

D̂∗N (w̄)(v∗) =

{
Ω4(w̄)(v∗) if 〈v∗, a〉 ≥ 0,

∅ if 〈v∗, a〉 < 0;

(f) If ‖x̄‖ = r̄, aT x̄+ b̄ = 0, and v̄ = θx̄+ γa with θ > 0, γ > 0 then

D̂∗N (w̄)(v∗) ⊂

{
Ω5(w̄)(v∗) if 〈v∗, x̄〉 = 0 and 〈v∗, a〉 = 0,

∅ otherwise
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(g) If ‖x̄‖ = r̄, aT x̄+ b̄ = 0, and v̄ = θx̄ with θ > 0, then

D̂∗N (w̄)(v∗) ⊂

{
Ω1

5(w̄)(v∗) if 〈v∗, x̄〉 = 0 and 〈v∗, a〉 ≥ 0,

∅ otherwise

(h) If ‖x̄‖ = r̄, aT x̄+ b̄ = 0, and v̄ = γa with γ > 0, then

D̂∗N (w̄)(v∗) ⊂

{
Ω2

5(w̄)(v∗) if 〈v∗, x̄〉 = 0 and 〈v∗, x̄〉 ≥ 0,

∅ otherwise

(i) If ‖x̄‖ = r̄, aT x̄+ b̄ = 0, and v̄ = 0 then

D̂∗N (w̄)(v∗) ⊂

{
Ω6(w̄)(v∗) if 〈v∗, x̄〉 ≥ 0, and 〈v∗, a〉 ≥ 0,

∅ otherwise.

Theorem 4.7. For every w̄ = (x̄, r̄, b̄, v̄) ∈ gphN , the assertions are valid:

(a) If ‖x̄‖ < r̄ and aT x̄+ b̄ < 0, then v̄ = 0 and

D∗N (w̄)(v∗) = {(0Rn, 0R, 0R)};

(b) If ‖x̄‖ = r̄, aT x̄+ b̄ < 0, and v̄ = θx̄ with θ > 0 then

D∗N (w̄)(v∗) =

{
Ω1(w̄)(v∗) if 〈v∗, x̄〉 = 0,

∅ if 〈v∗, x̄〉 6= 0;

(c) If ‖x̄‖ = r̄, aT x̄+ b̄ < 0, and v̄ = 0 then

D∗N (w̄)(v∗) =


{0Rn+2} if 〈v∗, x̄〉 < 0,

Ω2(w̄)(v∗) if 〈v∗, x̄〉 > 0,

Ω′2(w̄)(v∗) if 〈v∗, x̄〉 = 0;

(d) If ‖x̄‖ < r̄, aT x̄+ b̄ = 0, and v̄ = γa with γ > 0 then

D∗N (w̄)(v∗) =

{
Ω3(w̄)(v∗) if 〈v∗, a〉 = 0,

∅ if 〈v∗, a〉 6= 0;

(e) If ‖x̄‖ < r̄, aT x̄+ b̄ = 0, and v̄ = 0 then

D∗N (w̄)(v∗) =


{0Rn+2} if 〈v∗, a〉 < 0,

Ω4(w̄)(v∗) if 〈v∗, a〉 > 0,

Ω3(w̄)(v∗) if 〈v∗, a〉 = 0;
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(f) If ‖x̄‖ = r̄, aT x̄+ b̄ = 0, and v̄ = θx̄+ γa with θ > 0, γ > 0 then

D∗N (w̄)(v∗) ⊂

{
Ω5(w̄)(v∗) if 〈v∗, v̄〉 = 0,

∅ if 〈v∗, v̄〉 6= 0;

(g) If ‖x̄‖ = r̄, aT x̄+ b̄ = 0, and v̄ = θx̄ with θ > 0 then

D∗N (w̄)(v∗) ⊂

{
Ω5(w̄)(v∗) ∪ Ω1(w̄)(v∗) if 〈v∗, x̄〉 = 0,

∅ if 〈v∗, x̄〉 6= 0;

(h) If ‖x̄‖ = r̄, aT x̄+ b̄ = 0, and v̄ = γa with γ > 0 then

D∗N (w̄)(v∗) ⊂

{
Ω5(w̄)(v∗) ∪ Ω3(w̄)(v∗) if 〈v∗, a〉 = 0,

∅ if 〈v∗, a〉 6= 0;

(i) If ‖x̄‖ = r̄, aT x̄+ b̄ = 0 and v̄ = 0 then

D∗N (w̄)(v∗) =



{(0Rn, 0R, 0R)} if 〈v∗, x̄〉 < 0 and 〈v∗, a〉 < 0,

Ω4(w̄)(v∗) if 〈v∗, x̄〉 < 0 and 〈v∗, a〉 > 0,

Ω2(w̄)(v∗) if 〈v∗, x̄〉 > 0 and 〈v∗, a〉 < 0,

Ω′2(w̄)(v∗) if 〈v∗, x̄〉 = 0 and 〈v∗, a〉 < 0,

Ω3(w̄)(v∗) if 〈v∗, x̄〉 < 0 and 〈v∗, a〉 = 0;

and

D∗N (w̄)(v∗) ⊂


Ω7(w̄)(v∗) if 〈v∗, x̄〉 > 0 and 〈v∗, a〉 > 0,

Ω8(w̄)(v∗) if 〈v∗, x̄〉 = 0 and 〈v∗, a〉 > 0,

Ω9(w̄)(v∗) if 〈v∗, x̄〉 > 0 and 〈v∗, a〉 = 0,

Ω10(w̄)(v∗) if 〈v∗, x̄〉 = 0 and 〈v∗, a〉 = 0,
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where

Ω1(ω̄)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R : b∗ = 0, x∗ = −r
∗

r̄
x̄+ θv∗},

Ω2(ω̄)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R : b∗ = 0, r∗ ≤ 0, x∗ = −r
∗

r̄
x̄},

Ω′2(ω̄)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R : b∗ = 0, x∗ = −r
∗

r̄
x̄},

Ω3(ω̄)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R : r∗ = 0, x∗ = b∗a},
Ω4(ω̄)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R : r∗ = 0, x∗ = b∗a, b∗ ≥ 0},
Ω5(ω̄)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R : 〈x∗, x̄〉+ r∗r̄ + b∗b̄ = 0},
Ω1

5(ω̄)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R : 〈x∗, x̄〉+ r∗r̄ + b∗b̄ = 0,

〈v∗, a〉 ≥ 0, b∗ ≥ 0},
Ω2

5(ω̄)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R : 〈x∗, x̄〉+ r∗r̄ + b∗b̄ = 0, 〈v∗, x̄〉 ≥ 0, r∗ ≤ 0};
Ω6(ω̄)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R : 〈x∗, x̄〉+ r∗r̄ + b∗b̄ = 0,

x∗ ∈ pos{x̄, a}, b∗ ≥ 0, r∗ ≤ 0},
Ω7(ω̄) = Ω2(ω̄)(v∗) ∪ Ω4(ω̄)(v∗) ∪ Ω6(ω̄)(v∗),

Ω8(ω̄) = Ω′2(ω̄)(v∗) ∪ Ω4(ω̄)(v∗) ∪ Ω1
5(ω̄)(v∗) ∪ Ω6(ω̄)(v∗),

Ω9(ω̄) = Ω2(ω̄)(v∗) ∪ Ω3(ω̄)(v∗) ∪ Ω2
5(ω̄)(v∗) ∪ Ω6(ω̄)(v∗),

Ω10(ω̄) = Ω′2(ω̄)(v∗) ∪ Ω3(ω̄)(v∗) ∪ Ω5(ω̄)(v∗) ∪ Ω6(ω̄)(v∗).

4.3.3. Lipschitzian stability

In this subsection, we use obtained results and the Mordukhovich criterion
(see Mordukhovich (2006)) for the locally Lipschitz-like property of multifunc-
tions to investigate Lipschitzian stability of (ET1(w̄)) with respect to the linear
perturbations. We always assume that (ET1(w̄)) satisfies LICQ.

The stationary solution set of (ET1(w)) is rewritten by S(Q, q, r, b). Recall
that (see, for instance, Facchinei and Pang (2003)), under LICQ, x is a stationary
solution of (ET1(w̄)) if and only if

〈Qx+ q, y − x〉 ≥ 0 ∀y ∈ F(r, b),

i.e., x is a global solution of the generalized equation

0 ∈ Qx+ q +N(x;F(r, b)).

We have
y ∈ H(x, z) +M(x, z),
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where y := −q, z := (Q, r, b), H(x, z) := Qx and M(x, z) := N (x, r, b).

Denote by Rn×n
s the linear subspace of symmetric n × n matrices in Rn×n

and put Z := Rn×n
s × R × R. Then, S(·) can be interpreted as the multifunction

S̃ : Z × Rn ⇒ Rn defined by

S̃(z, y) = {x ∈ Rn : y ∈ H(x, z) +M(x, z)}.

Then, we have
S̃(z, y) = S(Q, q, r, b).

The following theorem estimates the Mordukhovich coderivative of S̃(·).

Theorem 4.8. Consider the problem (ET1(w̄)) and (z̄, ȳ, x̄) ∈ gphS̃. For each
x∗ ∈ Rn, if (y∗, z∗) ∈ D∗S̃(z̄, ȳ, x̄)(x∗) then:

Q̄y∗ = 2x∗,

Q∗ij = −y∗i x̄j,
(x∗, r∗, b∗) ∈ D∗N (x̄, r̄, b̄, v̄)(−y∗);

where z̄ = (Q̄, r̄, b̄), v̄ = ȳ − H(x̄, z̄) = −q̄ − Q̄x̄, z∗ = (Q∗, r∗, b∗) and Q∗ij is the
(i, j)th element of Q∗.

Some sufficient conditions for the local Lipschitz-like property of S(·) is
estimated as follows.

Theorem 4.9. The multifunction (Q̃, q̃, r̃, b̃) 7→ S(Q̃, q̃, r̃, b̃) is locally Lipschitz-
like around (Q̄, q̄, r̄, b̄, x̄) ∈ gphS if at least one of the following conditions is
satisfied:

(i) ‖x̄‖ < r̄, aT x̄+ b̄ < 0 and detQ̄ 6= 0;

(ii) ‖x̄‖ = r̄, aT x̄+ b̄ < 0 and Q̄x̄+ q̄ = θx̄, θ > 0;

(iii) ‖x̄‖ = r̄, aT x̄ + b̄ < 0, Q̄x̄ + q̄ = 0, rank(Q̄; x̄) = n and 〈x̄, u〉 = 0 for every
u ∈ Null(Q̄);

(iv) ‖x̄‖ < r̄, aT x̄+ b̄ = 0, Q̄x̄+ q̄ = γa, γ > 0, and rank(Q̄; a) = n;

(v) ‖x̄‖ < r̄, aT x̄ + b̄ = 0, Q̄x̄ + q̄ = 0, rank(Q̄; a) = n and 〈a, u〉 = 0 for every
u ∈ Null(Q̄);

(vi) ‖x̄‖ = r̄, aT x̄+ b = 0, b is unperturbed and detQ̄ 6= 0.
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General Conclusions

Our main results for the parametric quadratic programming problems with
non-convex objective function include:

1. A Frank-Wolfe type theorem and an Eaves type theorem for solution existence;

2. Conditions for upper and lower semicontinuities of the global and local optimal
solution map;

3. Some stability results for the stationary solution set;

4. Conditions for the continuity, Lipschitz property and directional differentia-
bility of the optimal value function;

5. Upper estimations for the Mordukhovich coderivative and conditions for the
local Lipschitz-like property of the stationary solution map in parametric
extended trust region subproblems.
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